Subtype-aware Unsupervised Domain Adaptation for Medical Diagnosis
نویسندگان
چکیده
Recent advances in unsupervised domain adaptation (UDA) show that transferable prototypical learning presents a powerful means for class conditional alignment, which encourages the closeness of cross-domain centroids. However, inner-class compactness and underlying fine-grained subtype structure remained largely underexplored. In this work, we propose to adaptively carry out subtype-aware alignment by explicitly enforcing class-wise separation subtype-wise with intermediate pseudo labels. Our key insight is unlabeled subtypes can be divergent one another different label shifts, while inheriting local proximity within subtype. The cases or without prior information on numbers are investigated discover an online fashion. proposed dynamic UDA achieves promising results medical diagnosis task.
منابع مشابه
Discriminative and Geometry Aware Unsupervised Domain Adaptation
Domain adaptation (DA) aims to generalize a learning model across training and testing data despite the mismatch of their data distributions. In light of a theoretical estimation of upper error bound, we argue in this paper that an effective DA method should 1) search a shared feature subspace where source and target data are not only aligned in terms of distributions as most state of the art D...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملBoosting for Unsupervised Domain Adaptation
To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...
متن کاملUnsupervised Transductive Domain Adaptation
Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...
متن کاملCorrelation Alignment for Unsupervised Domain Adaptation
In this chapter, we present CORrelation ALignment (CORAL), a simple yet effective method for unsupervised domain adaptation. CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. In contrast to subspace manifold methods, it aligns the original feature distributions of the source and target domains, rather th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i3.16317